Explainability of a classification model is crucial when deployed in real-world decision support systems. Explanations make predictions actionable to the user and should inform about the capabilities and limitations of the system. Existing explanation methods, however, typically only provide explanations for individual predictions. Information about conditions under which the classifier is able to support the decision maker is not available, while for instance information about when the system is not able to differentiate classes can be very helpful. In the development phase it can support the search for new features or combining models, and in the operational phase it supports decision makers in deciding e.g. not to use the system. This paper presents a method to explain the qualities of a trained base classifier, called PERFormance EXplainer (PERFEX). Our method consists of a meta tree learning algorithm that is able to predict and explain under which conditions the base classifier has a high or low error or any other classification performance metric. We evaluate PERFEX using several classifiers and datasets, including a case study with urban mobility data. It turns out that PERFEX typically has high meta prediction performance even if the base classifier is hardly able to differentiate classes, while giving compact performance explanations.
translated by 谷歌翻译
A framework for creating and updating digital twins for dynamical systems from a library of physics-based functions is proposed. The sparse Bayesian machine learning is used to update and derive an interpretable expression for the digital twin. Two approaches for updating the digital twin are proposed. The first approach makes use of both the input and output information from a dynamical system, whereas the second approach utilizes output-only observations to update the digital twin. Both methods use a library of candidate functions representing certain physics to infer new perturbation terms in the existing digital twin model. In both cases, the resulting expressions of updated digital twins are identical, and in addition, the epistemic uncertainties are quantified. In the first approach, the regression problem is derived from a state-space model, whereas in the latter case, the output-only information is treated as a stochastic process. The concepts of It\^o calculus and Kramers-Moyal expansion are being utilized to derive the regression equation. The performance of the proposed approaches is demonstrated using highly nonlinear dynamical systems such as the crack-degradation problem. Numerical results demonstrated in this paper almost exactly identify the correct perturbation terms along with their associated parameters in the dynamical system. The probabilistic nature of the proposed approach also helps in quantifying the uncertainties associated with updated models. The proposed approaches provide an exact and explainable description of the perturbations in digital twin models, which can be directly used for better cyber-physical integration, long-term future predictions, degradation monitoring, and model-agnostic control.
translated by 谷歌翻译
In recent years the importance of Smart Healthcare cannot be overstated. The current work proposed to expand the state-of-art of smart healthcare in integrating solutions for Obsessive Compulsive Disorder (OCD). Identification of OCD from oxidative stress biomarkers (OSBs) using machine learning is an important development in the study of OCD. However, this process involves the collection of OCD class labels from hospitals, collection of corresponding OSBs from biochemical laboratories, integrated and labeled dataset creation, use of suitable machine learning algorithm for designing OCD prediction model, and making these prediction models available for different biochemical laboratories for OCD prediction for unlabeled OSBs. Further, from time to time, with significant growth in the volume of the dataset with labeled samples, redesigning the prediction model is required for further use. The whole process requires distributed data collection, data integration, coordination between the hospital and biochemical laboratory, dynamic machine learning OCD prediction mode design using a suitable machine learning algorithm, and making the machine learning model available for the biochemical laboratories. Keeping all these things in mind, Accu-Help a fully automated, smart, and accurate OCD detection conceptual model is proposed to help the biochemical laboratories for efficient detection of OCD from OSBs. OSBs are classified into three classes: Healthy Individual (HI), OCD Affected Individual (OAI), and Genetically Affected Individual (GAI). The main component of this proposed framework is the machine learning OCD prediction model design. In this Accu-Help, a neural network-based approach is presented with an OCD prediction accuracy of 86 percent.
translated by 谷歌翻译
暗物质光环的质量分布是初始密度扰动通过质量积聚和合并的层次增长的结果。我们使用一个可解释的机器学习框架来提供对暗物质光环的球形平均质量概况的起源的物理见解。我们训练梯度促进的树算法,以预测聚类大小的光环的最终质量曲线,并衡量提供给算法的不同输入的重要性。我们在初始条件(ICS)中找到了两个主要量表,它们影响最终的质量曲线:大约在Haloes的Lagrangian Patch $ r_l $($ r \ sim 0.7 \,r_l $)的比例下的密度,并且在大型中-scale环境($ r \ sim 1.7〜r_l $)。该模型还标识了光环组装历史记录中的三个主要时间尺度,这些时间尺度影响最终轮廓:(i)晕圈内病毒化的,折叠的材料的形成时间,(ii)动态时间,捕获动态无移动的,插入的动态时间光环的第一个轨道(iii)的组成部分是第三个,最近的时间尺度,它捕获了对最近大规模合并事件外部特征的影响。尽管内部轮廓保留了IC的内存,但仅此信息就不足以对外部轮廓产生准确的预测。当我们添加有关Haloes的质量积聚历史的信息时,我们发现所有半径的预测概况都有显着改善。我们的机器学习框架为ICS和质量组装历史的作用提供了新的见解,并在确定集群大小的光环的最终质量概况中。
translated by 谷歌翻译